

FEROTOPTM

TODA KOGYO Group

Magnetic compounds for bonded magnet

- Product brochure -

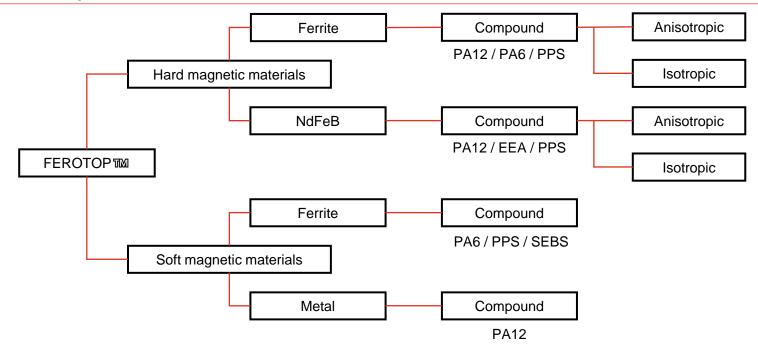
素材のチカラを未来のタカラに

Introduction	2
Features / Applications	3
Advantage of using FEROTOP IM	4
Solutions provided by TODA KOGYO Group	5
Production bases	6
Hard ferrite compound	
Property overview	7
Temperature property	
Orientation / Magnetizing property	
Water absorption rate and strength change	
Recyclable rate	
NdFeB compound	
Property overview	13
Temperature property	
Initial flux loss / Long-term stability	
Orientation / Magnetizing property	
Recyclable rate	
Use in automobile	
Corrosion resistance	
Soft Ferrite compound	
Property overview	23
Handling precautions	24
Shape of test piece	25

Introduction 2

What is FEROTOPTM?

"FEROTOP™" means TODA KOGYO's bonded magnet compounds for molding purpose that are composite of resins and magnetic powders. We have a wide variety of products portfolio regarding both hard and soft magnetic compounds as shown below, which has been adopted in various applications in various industries.


Based on the knowledge accumulated on "FEROTOP™" for many years, we can customize the characteristic of magnetic compounds to meet the wide range of requests from customers.

"FEROTOPTM" has the following features.

- Excellent processability, possible to mold into various sizes and complicated shapes with high dimensional accuracy.
- Flexible magnetic designs of waveforms by various ways of magnetization, including radial orientation and multi-pole magnetization (for hard magnetic materials).
- Integrated and simplified process achievable, by molding compounds and other parts at once.

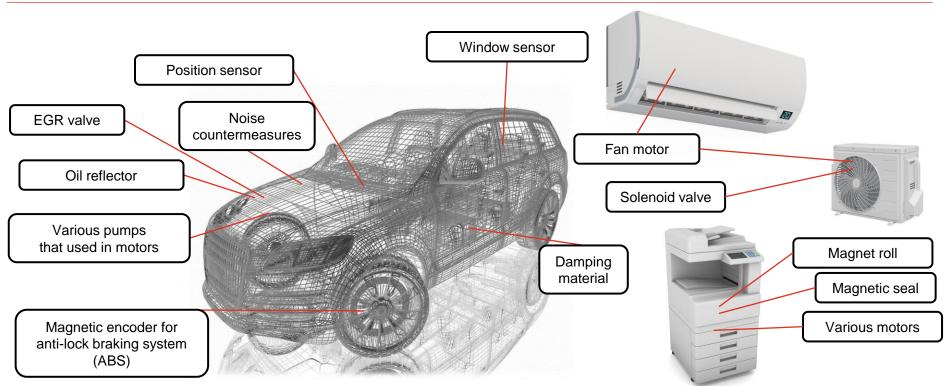
Not only customizing the compounds' characteristics, but we can also design the compounds from its raw materials to meet customer's required specification, as we develop and manufacture magnetic powders by our own. Moreover, we have compound production bases located not only in Japan but also in China and Thailand so we can respond to the global demand from our customers.

FEROTOP I lineup

Features

◆Excellent processability

- Possible to mold into various sizes and complicated shapes with high dimensional accuracy
- · Excellent strength and impact resistance
- ◆ Flexibility to magnetization (hard magnetic material)
 - Easy to adapt to multi-pole magnetizing such as radial orientation and complex magnetizing


♦Cost efficiency by integral molding

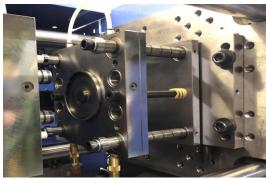
- Integrated and simplified process achievable, by molding compounds and other parts at once.
- Possible to make anisotropic magnets with magnetic field orientation mold or magnetic field injection molding machine.

1			
Item	Injection	compression	Sintered
Strength	0	Δ	×
Weather-resistance	0	*_	*×
Magnetic force	Δ	0	0
Accuracy of dimension	0	Δ	Δ
Flexibility of design	0	×	×
Integral molding	0	×	×

Applications

*Compression and sintered may require coating such as plating.

♦ Process when using sintered magnets


Purchase of magnets	Applying of adhesive	Sticking magnets	Other processes	Rotor
			Thermosetting Magnetization	
Difficult to arrange the shape of magnets for intended application by your own.	Adhesion → The pasting procincreases both production cos		Heating and magnetizing processes are required.	

Process simplification

♦ Process when using plastic magnets

Purchase of materials	Injection molding in a magnetic field	Other processes	Rotor
	Charge Materials	Magnetization	
Possible to arrange the shape of magnets as intended by injection molding.	Possible to mold the magnetic materials directly to core shafts without using adhesive.(Orientation is required for anisotropic materials)	Magnetization process is required.(depending on the material)	

Injection molding machine

Partnership

- Optimized supply chain of group affiliates
- Proposal of total solutions for "the ultimate issues to solve"

Molded products

Powders

- · Hard ferrite powders
- Soft ferrite powders
- NdFeB powders
- Metal powders
 - ✓ Material development
 - ✓ Control powder properties

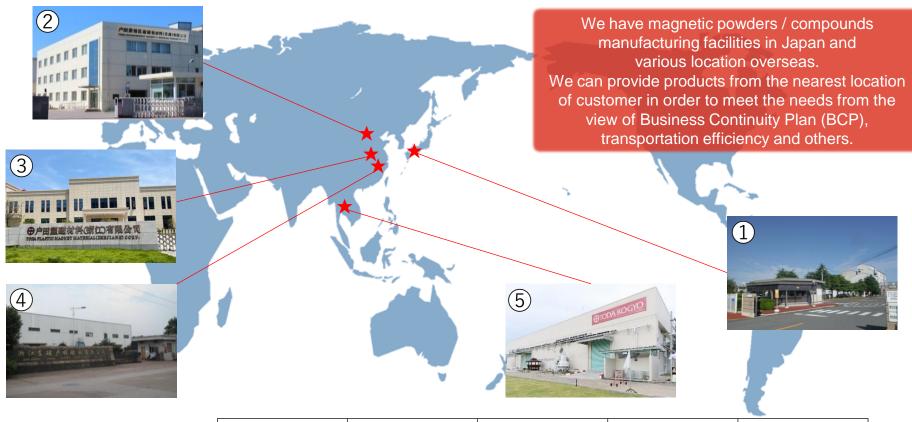
Solution proposals from powder supply to application

Solution

- · Analysis of magnetic field
- · Support of magnet molding
- · Support of prototype mold design
- ✓ Analysis technology
- ✓ Injection molding technology
- ✓ Mold design technology

Magnetic powders

Compounds


Composite with resin

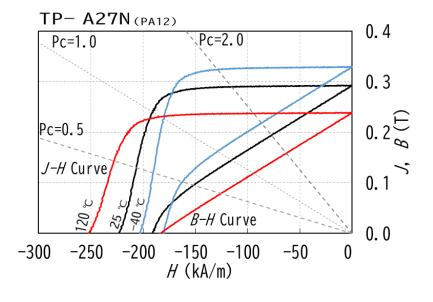
- For injection (PA, PPS, EEA)
- For extrusion (EEA, SEBS)
- ✓ Powder optimization
- ✓ Surface treatment technology

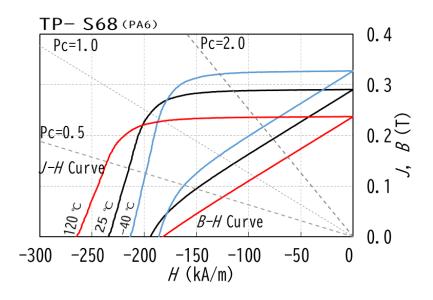
Magnetic compounds

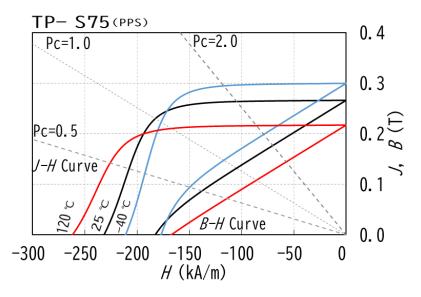
			1	2	3	4	5
Man	ufacturinç	location	TODA KOGYO CORP. Otake Plant	Toda Magnetic Material (Tianjin) Co., Ltd.	Toda Plastic Material (Zhejiang) Co., Ltd.	Zhejiang East Magnetic Industry Co., Ltd.	TODA KOGYO Asia (Thailand) CO., LTD
	Area		Japan(Hiroshima)	China(Tianjin)	China(Zhejiang)	China(Zhejiang)	Thailand(Ayutthaya)
	Ferrite	Powder	0	-	-	0	-
Production		Compound	und O - O		0	-	0
item	NdEaD	Powder	0	0	-	-	-
NdFeB Compoun		Compound	0	0	-	-	-
ISO cert	tification	ISO9001	1998 Year	2010 Year	2005 Year	2008 Year	2017 Year
obtain	ed in:	ISO14001	2002 Year	2012 Year	2006 Year	2013 Year	2018 Year

X Soft ferrite powder and compound are produced only at Otake Plant.

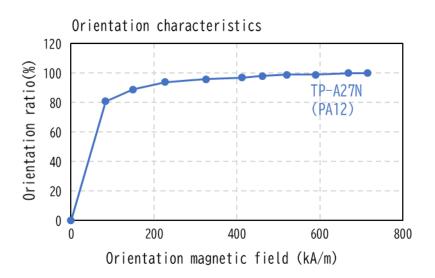
X Regarding NdFeB powders, we manufacture only anisotropic ones.

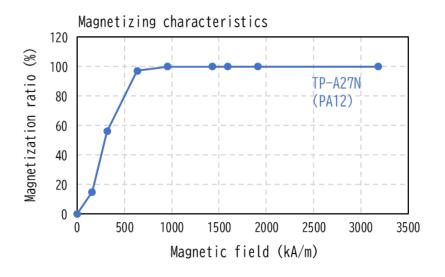

Manufacturing location: Thailand (Ayutthaya)


					Hard F	Ferrite Compou	und : Property	List						
			Magnet	tic Property	/	Physical property								
			AST	M-A977		ASTM-D792	ASTM-	1-D1238 ASTM-D790		ASTM-D638	ASTM-D256	JIS K 7197		
Resin	Grade	Br	Нс	Hci	(BH)max	Mold Density	Melt	Flow	Flexural	Tensile	IZOD impact	Linear expansion		
		(mT)	(kA/m)	(kA/m)	(kJ/m³)	(g/ail)	(g/10min)	Temp./Load	Strenght (MPa)	Strenght (MPa)	strenght (kJ/㎡)	coefficient (x10-5/°C)		
	TP-A27E(P2A)ND	281	188	235	15.4	3.65	71	270°C/10kg	108	50	20	-		
PA 12	TP-W27N	286	200	252	15.9	3.74	83	270°C/10kg	105	51	18	-		
	TP-A27N	289	186	224	16.2	3.74	90	270°C/10kg	98	53	11	6.0		
	TP-S68	289	189	228	16.2	3.77	92	270°C/10kg	160	86	15	3.7		
PA 6	TP-S68NT	286	191	230	16.0	3.76	60	270°C/10kg	166	98	14	-		
PAG	TP-S65NT	260	181	234	13.2	3.47	205	270°C/10kg	166	95	18	-		
	TP-S63NT	244	173	230	11.6	3.34	319	270°C/10kg	173	100	22	-		
PPS	TP-S73	240	170	234	11.3	3.42	190	330°C/10kg	110	65	8	-		
FFS	TP-S75	250	174	241	11.9	3.56	270	330°C/10kg	-	-	-	-		
EEA	TP-H98V	294	190	235	16.9	3.85	29 N.m	158°C	-	-	-	-		


^{*} The values shown are values of central tendency.

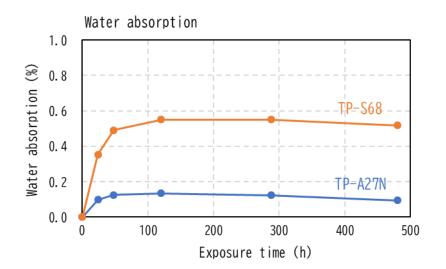
The demagnetization curves at -40°C and 120 °C are calculated ones which are based on the actual demagnetization curve at 25 °C and following temperature coefficients.

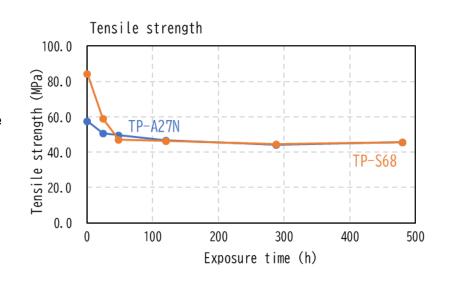

Temp. (℃)	-40	120
α_{Br} (%/°C)	-0.19	-0.19
<i>β_{Hcj}</i> (%/°C)	0.14	0.14

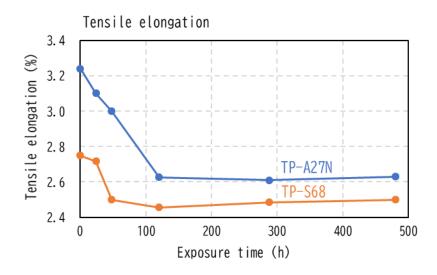


^{*} The values shown are values of central tendency.

Orientation characteristics

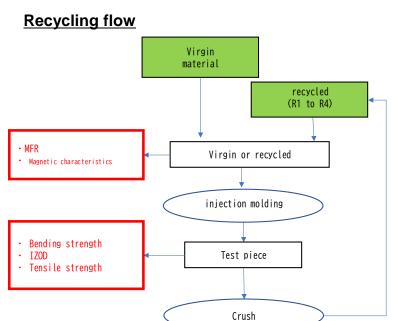

- This is the result of measurement after orientation without magnetization.
- ➤ The orientation ratio of the anisotropic compound is calculated in comparison to the value at 700 kA/m as 100%.

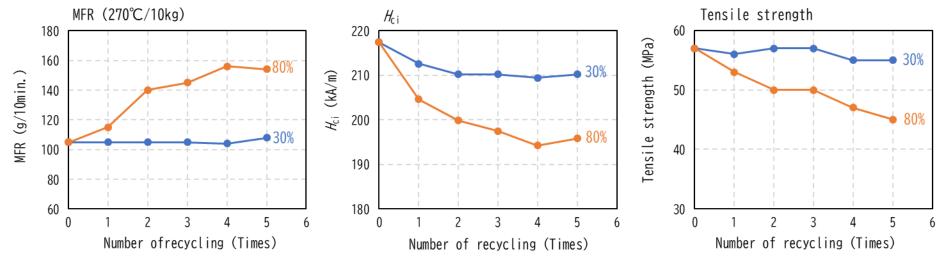

Magnetizing characteristics


- ➤ This is the result of measurement after the processing of (i) orientation at 700 kA/m, (ii) demagnetization, and (iii) magnetization.
- ➤ The magnetization ratio is calculated in comparison to the value magnetized at 3200 kA/m as 100%.

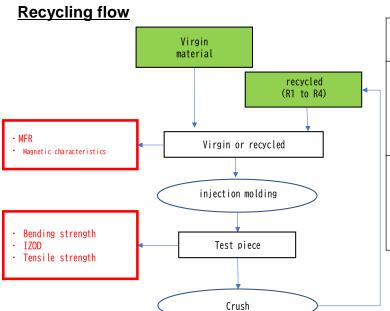
^{*} The values shown are values of central tendency.

- ➤ Tensile strength and tensile elongation are the results measured at room temperature after the specified exposure time.
- ➤ The water absorption rate is the result calculated from the weight change of the dumbbell test piece before and after the specified exposure time.
 - ☐ Test grade: TP-A27N (PA12), TP-S68 (PA6)
 - ☐ Sample shape: Dumbbell test piece 175 x 12.5 x 3.2mm
 - ☐ Exposure environment: 85 °C / 85% RH

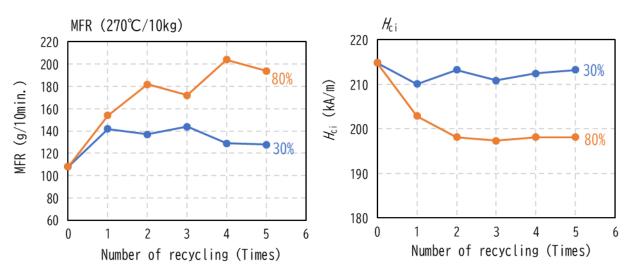


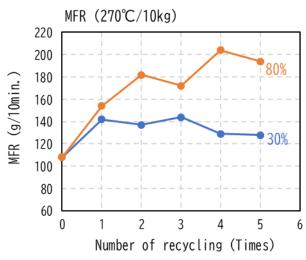

^{*} The values shown are values of central tendency.

Test grade: TP-A27N (PA12)


Recycling rate (%)	No.	<i>B</i> _r (mT)	H _c (kA/m)	H _{ci} (kA/m)	(<i>BH</i>) _{max} (kJ/m³)	MFR (g/10min)	Bending strength (MPa)	Tensile strength (MPa))	IZOD strength (kJ/m²)
	V	289	187	217	16.7	105	113	57	16
	R1	290	185	212	16.7	105	113	56	14
30	R2	290	183	210	16.7	105	112	57	13
	R3	290	183	210	16.7	105	112	57	13
	R4	288	181	209	16.6	104	110	55	13
	V	289	187	217	16.7	105	113	57	16
	R1	288	177	205	16.6	115	105	53	11
80	R2	291	177	200	16.8	140	102	50	11
	R3	290	174	197	16.6	145	99	50	10
	R4	289	171	194	16.7	156	99	47	10

^{*} MFR measurement conditions: 270 °C / 10kg


^{*} The values shown are values of central tendency.


Test grade: TP-S68 (PA6)

Recycling rate		B_{r}	H _c	H _{ci}	(BH) _{max}	MFR	Bending	Tensile	IZOD
(%)	No.	(mT)	(kA/m)	(kA/m)	(kJ/m³)	(g/10min)	strength (MPa)	strength (MPa))	strength (kJ/m²)
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	000	404	045	40.4	400		` ''	
	V	289	181	215	16.4	108	162	88	14
	R1	292	180	210	16.8	142	153	86	11
30	R2	289	181	213	16.4	137	143	83	11
	R3	291	180	211	16.7	144	156	80	12
	R4	290	180	212	16.6	129	153	80	11
	V	289	181	215	16.4	108	162	88	14
	R1	289	173	203	16.5	154	135	76	12
80	R2	290	169	198	16.5	182	137	69	10
	R3	291	169	197	16.6	185	133	67	11
	R4	292	170	198	16.7	204	133	64	9

^{*} MFR measurement conditions : 270°C/10kg

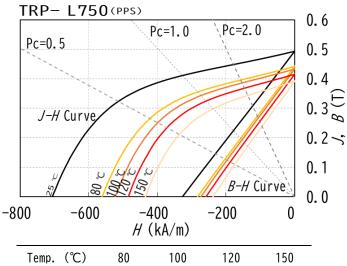
* The values shown are values of central tendency.

Isotropic

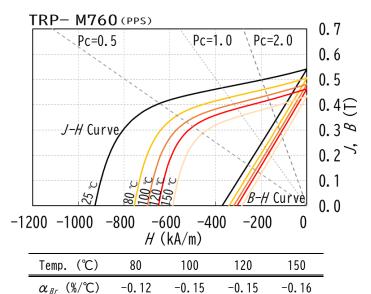
Magnetic property ASTM-A977 ASTM-D792 ASTM-D1238 ASTM-D790 ASTM-D638 ASTM-D638 ASTM-D638													
				ASTM	I-A977		ASTM-D792	ASTM-	·D1238	ASTM-D790	ASTM-D638	ASTM-D256	JIS K 7197
Resin	Property	Grade	-			(5)	NA 11 1 1	Melt	flow	Flexural	Tensile	IZOD impact	Linear
			<i>B</i> r (mT)	<i>H</i> c (kA/m)	H _{ci} (kA/m)	(<i>BH</i>) _{max} (kJ/m³)	Mold density (g/cm³)	(g/10min)	Temp./Load	strength	strength	strength	expansion coefficient
			(,	(10 0111)	(10 (111)	(1.07111)	(9/ 011)	(g/ romin)	Temp./Load	(MPa)	(MPa)	(kJ/m²)	(×10-5/°C)
		TRP-L230	390	279	736	27.1	4.05	680	270°C/5kg	105	60	23	6.8
	General	TRP-L240	460	322	724	36.6	4.60	440	270°C/5kg	116	64	22	6.0
	General	TRP-L250	507	338	693	43.0	5.01	470	270°C/5kg	122	60	17	3.8
		TRP-L260	556	362	717	50.1	5.37	480	270°C/5kg	101	54	10	3.2
PA12	High thermal stability	TRP-M260	531	368	954	48.5	5.11	520	270°C/5kg	104	60	15	4.3
	High Br	TRP-N270	585	370	710	54.1	5.28	510	270°C/5kg	107	60	13	2.8
		TRP-N280S	619	385	704	59.7	5.54	770	270°C/5kg	85	47	8	3.0
	TilgiTBI	TRP-N280F	614	409	746	62.1	5.53	810	270°C/5kg	104	57	9	2.8
		TRP-N290F	678	440	735	74.0	5.90	350	270°C/5kg	90	56	6	2.2
EEA	High Br	TRP-N970	573	373	789	53.3	5.26	94	200°C/10kg	-	-	-	-
	General	TRP-L740	462	325	742	37.4	4.74	180	310°C/5kg	115	75	9	2.0
	General	TRP-L750	500	349	727	43.8	5.08	110	310°C/5kg	80	58	6	1.5
PPS	High thermal stability	TRP-M760	525	374	939	49.3	5.30	80	310°C/5kg	68	43	5	1.3
		TRP-N750B	495	343	739	43.0	4.87	120	310°C/5kg	107	69	11	1.8
	High Br	TRP-N760	533	347	689	46.9	5.08	70	310°C/5kg	93	56	8	1.2
		TRP-N770F	596	394	711	58.1	5.44	100	310°C/5kg	64	39	4	-

^{*} The values shown are values of central tendency.

Hybrid (NdFeB + ferrite)


				Magnetic	property	/	Physical property							
				ASTM	-A977		ASTM-D792	ASTM-	ASTM-D1238		ASTM-D638	ASTM-D256	JIS K 7197	
Resin	Property	Grade				(D) A		Melt	Melt Flow		Tensile	IZOD impact	Linear	
			<i>B</i> _r (mT)	H _c (kA/m)	H _{ci} (kA/m)	(<i>BH</i>) _{max} (kJ/m³)	Mold Density (g/cm³)	(g/10min)	Temp./Load	strength (MPa)	strength (MPa)	strength (kJ/m ²)	expansion coefficient (×10-5/°C)	
PA12		TRP-Y235	338	217	580	19.1	4.39	286	270°C/5kg	106	60	11	-	
PAIZ	-	TRP-Y240	394	251	643	26.3	4.67	168	270°C/5kg	111	62	13	-	
PPS	-	TRP-Y725	353	226	598	20.7	4.52	67	310°C/5kg	114	74	8	-	

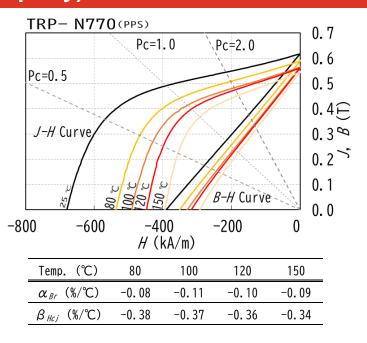
Anisotropic

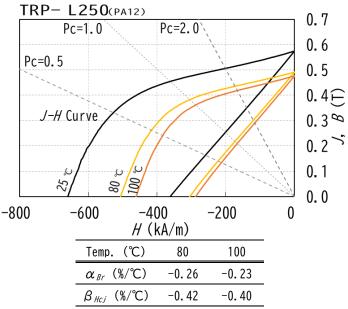

				Magnetic	property	/			Р	hysical propert	ty		
				ASTM	l-A977		ASTM-D792	ASTM-	ASTM-D1238		ASTM-D638	ASTM-D256	JIS K 7197
resin	property	Grade						Melt	Flow	Flexural	Tensile	IZOD impact strength (kJ/m²)	Linear
BA40			<i>B</i> _r (mT)	H _c (kA/m)	H _{ci} (kA/m)	(<i>BH</i>) _{max} (kJ/m³)	Mold Density (g/cm)	(g/10min)	Temp./Load	strength (MPa)	strength (MPa)		expansion coefficient (×10-5/°C)
PA12	High Br	TRP-A216 (In Lab.)	865	482	965	117	5.55	400	270°C/5kg	95	51	7	-
	High Coercivity	TRP-T710C	685	475	1220	85.1	5.00	110	340°C/10kg	90	55	10	-
PPS	High thermal stability	TRP-T790F (in Lab.)	633	432	1067	69.8	4.94	113	340°C/10kg	99	62	8	-
	High Br	TRP-A712 (In Lab.)	756	423	914	88.3	4.98	184	340°C/10kg	101	59	7	-

^{*}The values of "Anisotropic" are measured in Japan (Otake) .

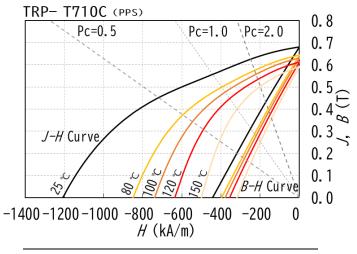
^{*} The values shown are values of central tendency.

Temp. (℃)	80	100	120	150
<i>α_{βr}</i> (%/°C)	-0.19	-0.16	-0.17	-0.17
<i>β_{Hcj}</i> (%/℃)	-0.37	-0.35	-0.33	-0.31

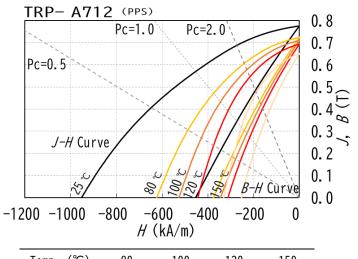

-0.33


-0.32

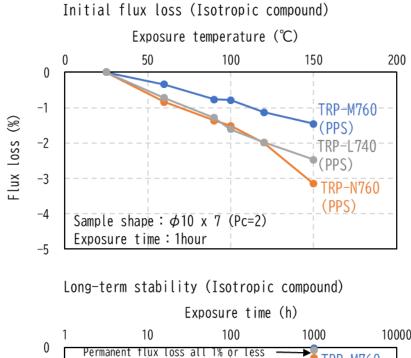
-0.29

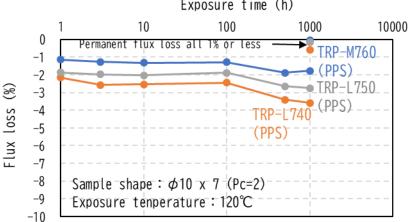

β_{Hcj} (%/°C)

-0.34

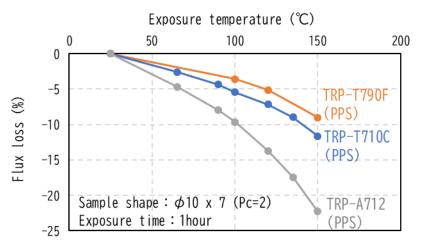


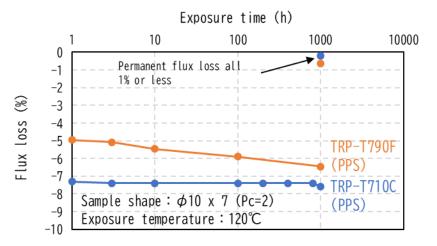
^{*} The values shown are values of central tendency.




Temp. (℃)	80	100	120	150
α_{Br} (%/°C)	-0.10	-0.10	-0.11	-0.11
β _{Hcj} (%/°C)	-0.54	-0.52	-0.50	-0.47

_	Temp. (℃)	80	100	120	150
	<i>α_{Br}</i> (%/°C)	-0.12	-0.11	-0.11	-0.13
	β _{Hcj} (%/°C)	-0.63	-0.60	-0.56	-0.52

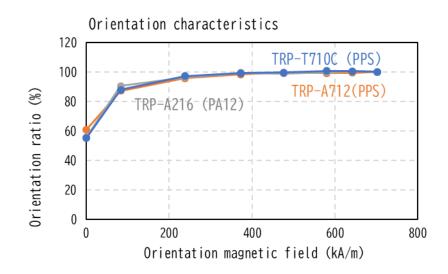

^{*} The values shown are values of central tendency.

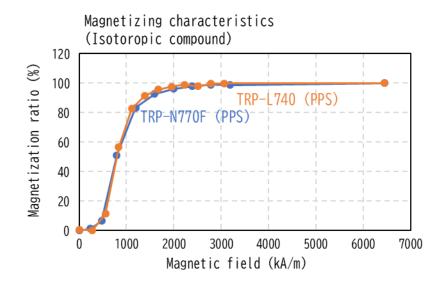


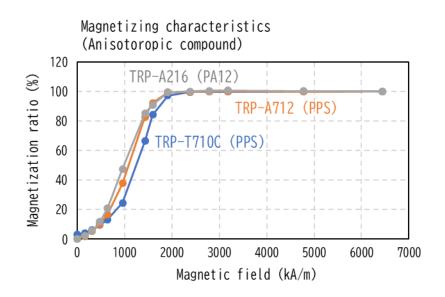
◆ Permanent flux loss is evaluated by magnetizing at 8640 kA/m after 1000h exposure.

Initial flux loss (Anisotropic compound)

Long-term stability (Anisotropic compound)

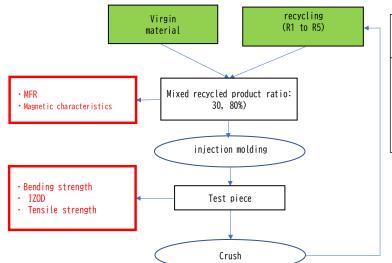

^{*} The values shown are values of central tendency.


Orientation characteristics

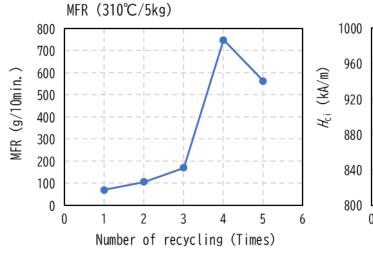

- ➤ The orientation ratio of the anisotropic compound is the result measured by magnetizing at 6450 kA/m after orientation.
- ➤ The orientation ratio of the anisotropic compound is calculated in comparison to the value at 700 kA/m as 100%.

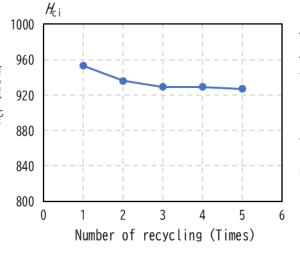
Magnetizing characteristics

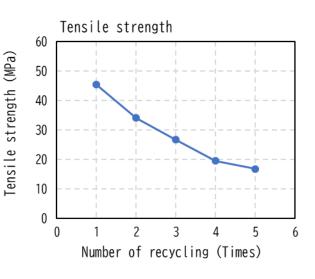
- ➤ The magnetizing characteristics of the anisotropic compound are the results after the processing of (i) orientation at 700 kA/m, (ii) demagnetization, and (iii) magnetization.
- ➤ The magnetization ratio of the anisotropic/isotropic compound is calculated in comparison to the value at 8450 kA/m as 100%.



^{*} The values shown are values of central tendency.

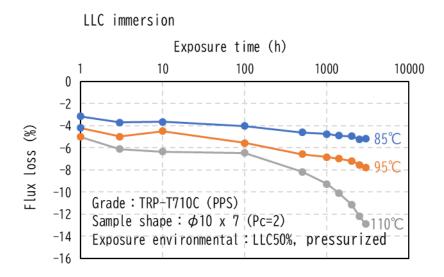

Test grade: TRP-M760 (PPS)

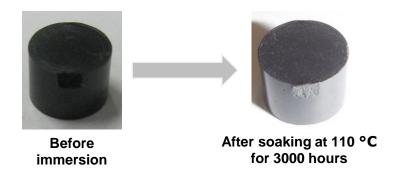

Recycling flow



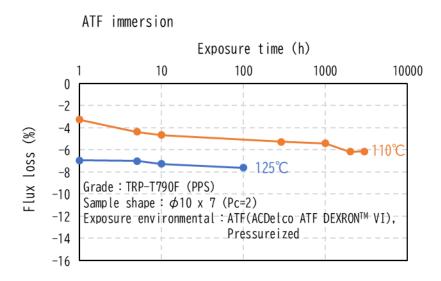
Recycling rate (%)	No.	B _r (mT)	H _c (kA/m)	H _{ci} (kA/m)	(<i>BH</i>) _{max} (kJ/m³)	MFR (g/10min)	Bending strength (MPa)	Tensile strength (MPa))	IZOD strength (kJ/m³)
	V	526	363	953	47.3	71	86	45	5
	R1	525	360	936	46.8	106	63	34	4
100	R2	525	359	929	46.5	170	45	27	3
	R3	522	357	929	45.8	748	36	19	2
	R4	525	357	927	46.2	563	30	17	2

* MFR measurement conditions :310°C/5kg

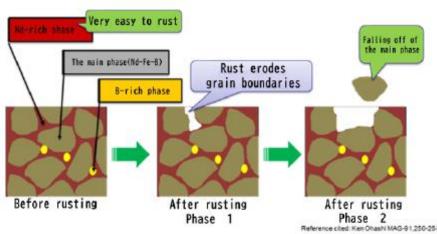




^{*} The values shown are values of central tendency.


◆ Heat resistance in high temperature LLC environment

◆ External appearance after immersion test Even after immersion at 110 °C for 3000 hours, no rust occurred on molded product including the gate part of the molded product.


◆ Heat resistance in high temperature ATF environment

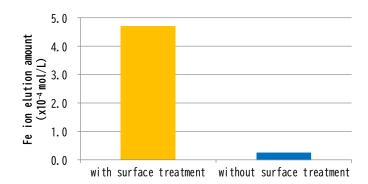
^{*} The values shown are values of central tendency.

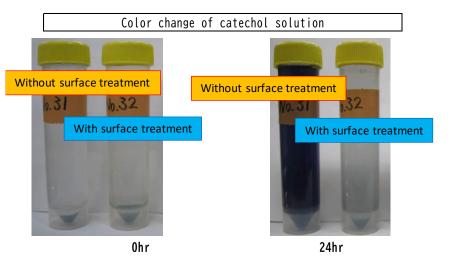
- Basically, NdFeB magnets are vulnerable to corrosion, so we apply rust preventive treatment on magnetic powders before compounding with resin.
- Our materials are enough resistant to corrosion for the use in submersible pump.

Rust generation mechanism

Rust begins from the Nd-rich phase, then the main phase will be invaded. Since this reaction does not form a passivation film, it does not stop and eventually causes the loss of the main phase. Also, Br decreases at this state.

◆Rust prevention to magnetic powders

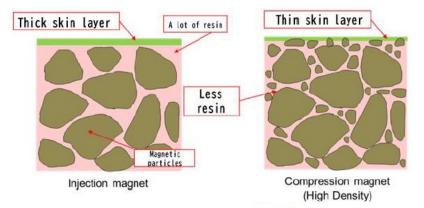

[Prevention method]


Apply special surface processing to the magnetic powders to prevent physical contact with oxygen and water.

[Evaluation method]

Result of immersion testing is shown on the right, in which 1 gram of material (magnetic powders with/without surface treatment above) is soaked in catechol solution (50 ml at 23 °C /24 hr).

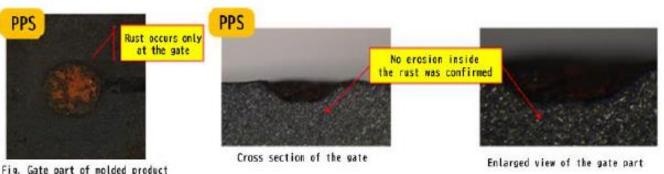
Fe ion elution amount (mol / L)						
	with surface	without surface	Magnification			
	treatment	treatment	(without / with)			
Elution amount	4. 7x10 ⁻⁴	2. 6x10 ⁻⁵	18.4			



^{*} The values shown are values of central tendency.

◆ Difference in corrosion resistance between compression molded magnets and injection molded magnets

The magnetic powders in bonded magnets are covered with more resin than those in compression magnets. This prevents contact with oxygen and water. Moreover, a skin layer is formed during molding which serves as preventive measure. The thickness of this skin layer changes depending on the injection conditions. You can select an appropriate mold design and injection conditions in order to obtain a sufficient skin layer for preventive purpose.



◆ Effect of skin layer

[Evaluation methods]

Immersion test in tap water (supplied in Otake, Hiroshima)

- Temperature: 26 °C
- Time: 100hr

^{*} The values shown are values of central tendency.

Features

A soft magnetic compound that uses ferrite powders manufactured at our factory. Customer can combine the magnetic powders and resin as desired that suits your application. We will provide products with excellent processability that support the needs of miniaturization, complicated shapes and thinning on the customers' side.

Example of Application

- Suppression of electromagnetic noise
- · Absorption of electromagnetic wave
- Magnetic shield
- · Magnetic core

Property overview

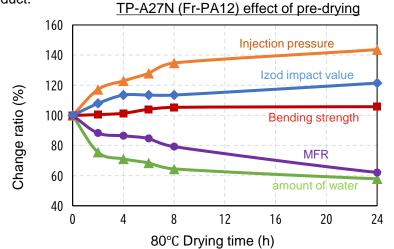
	Resin Grade Filler		Molding density	MFR	μ' at 1GHz	B at 786kA/m	Deflection temperature	Flexural strength	IZOD impact strength	Linear expansion coefficient
Resin		ASTM-D792	ASTM-D1238	-	-	ISO75-2	ASTM-D790	ASTM-D256	JIS K 7197	
		(g/cm³)	(g/10min)	(-)	(T)	(°C)	(MPa)	(kJ/m [*])	(×10-5/°C)	
PA12	SP-I247AEN	Magnetic powder	5.0	400 (270°C/5kg)	0.4	1.2	112	60	9	6.6
PA6	MC100LK31	Mn-Mg-Zn ferrite	3.3	55 (270°C/10kg)	2.1	0.2	172	120	6	4.1
PPS	SP-N736	Ni-Zn ferrite	3.6	40 (300°C/5kg)	3.0	0.2	215	95	5	2.2

^{*} Direction flatwise, bending stress 1.82 MPa

^{*} The values shown are values of central tendency.

Handling precautions

◆Preservation


- ✓ Avoid direct sunlight and high humidity; keep in a cool and dark place with stored in an airtight container.
- ✓ Nylon materials are required to be hermetically sealed, as they would take up moisture and their molding quality might be affected.
- ✓ Rare earth materials may deteriorate due to oxidation so make sure to keep hermetically sealed.
- Quality guarantee is valid for 6 months normally as long as the package is still unopened.

◆Pre-drying

✓ In order to reduce drooling from the nozzle and stabilize the molding, dry compounds in advance as necessary. Drying conditions depend on your specification of the equipment and molded products.

Resin	Drying temperature(°C)	Drying time (hr)
PA12	60 ~ 100	2 ~ 8
PA6	80 ~ 120	3 ~ 12
PPS	100 ~ 120	2 ~ 8

- ✓ Pre-drying affects the molding conditions, appearance of molded product, and properties of products as shown in the figure below. Processability will be impaired if they are absolutely dried or overdried. Orientation characteristics and magnetic force of anisotropic materials may be harmed due to the change in fluidity.
- ✓ Drying conditions depend on the season and the specification of your product.

◆ Molding machine / mold design

- ✓ Please use abrasion resistance cylinders and screws for the molding machine.
- ✓ Provide gas drainage of the mold in all parts including product parts and runner parts.
- ✓ When magnetic field molding is performed, materials are attracted to the magnetic force therefore fluxional behavior might be affected. Please note that the weld position and gas drainage position are different from those of normal resin.

◆ Temperature setting

- ✓ The viscosity of magnetic compounds is fluctuated by the melting temperature and residence time. Excessive temperature or stagnation may cause solidification or decrease in strength due to deterioration of the resin.
- ✓ Be sure to purge immediately before molding. Once the molding machine stops or is blocked, it needs to be re-purged.
- ✓ Please be aware for pin gate molding that the gate sealing time is short and pressure after gate seal tends to cause problems such as runner removal.
- ✓ The mold temperature depends on the shape and thickness of molded products. Generally around 80°C for Nylon materials.

Resin	Cylinder temperature (°C)	Mold temperature (°C)
PA12	220 ~ 290	50 ~ 100
PA6	250 ~ 300	60 ~ 100
PPS	290 ~ 340	120 ~ 150

♦ Filling pressure

- ✓ Since the filler is filled higher than general resin, the products become solidified faster and higher pressure is required.
- ✓ Anisotropic materials tend to reach high magnetic force and become uniformized by shortening the filling time.

◆ Recycling

✓ When using recycled materials, please test in advance and pay attention closely to their quality. Also, please follow the abovementioned instructions including preservation and pre-drying procedure of recycled materials.

* The values shown are values of central tendency.

Test		Test pieces		
		Shape: Flat plate		
	Bending strength	WO (full width): 12.7mm±2	1 wo	
	measurement	T (thickness): 3.2 mm ± 0.4	← LO →	
		LO (total length): 80mm±10		
		Shape: Flat plate (dumbbell)		
		W (width of thin part) : $13mm \pm 0.5$		
		WO (full width): 19mm±6.4	w	
For physical property	Tensile strength measurement	T (thickness): 3.2mm±0.4	- G-→ +	
(Strength)		LO (total length): maximum175mm		
		G (gauge length): 50mm±0.25	↓ LO	
		L (length of thin part) : $57mm \pm 0.5$		
		D (distance of grip): 115mm±5		
		Shape: Flat plate		
	Izod impact strength measurement	WO (full width): 12.7mm±2	↓ wo	
		T (thickness) : 3.2 mm ± 0.4	← LO	
		LO (length): 60mm +		
For magnetic property	Ferrite / Isotropic rare earths	Shape: Cylinder	10.0mm	
	compound magnetic property measurement Anisotropic rare earth compound	φ (diameter): 25mm	10.0mm	
		h (height): 10mm	25.0mm	
i or magnetic property		Shape: Cylinder	↑ 7.0mm	
		φ (diameter): 10mm	→ 7.0mm	
		h (height): 7mm	10.0mm	

[Contact]

Ayutthaya Plants, TODA KOGYO ASIA (THAILAND) CO., LTD.

Address: 73 Moo 9, Rojana Industrial Park, Tambon Thanu, Amphur U-Thai Ayutthaya 13210

Phone: 035-352-336 Ext 215

Fax: 035-352-339

E-mail: sales@tkat.co.th
Website: https://tkat.co.th/

Tokyo Sales Office, TODA KOGYO CORP.

Address: Seavans S Building 11th floor, 1-2-3 Shibaura, Minato-ku, Tokyo

Phone: +81-3-5439-6040

Fax: +81-3-5439-6045

E-mail: Webmaster@todakogyo.co.jp

Website: https://www.todakogyo.co.jp/english/

